Ilya Monosov, PhD

Associate Professor of Neuroscience

Research

Broadly, the Monosov laboratory is interested in the neuronal basis of voluntary behavior. What are the neuronal mechanisms that control exploration and learning? How do different attributes of behavioral-options impact our decision-making? For example, risk and unpredictability, sensory novelty, informativeness, and temporal delay all influence our preferences and choices. But the neuronal circuits and computational processes that make this possible remain to be uncovered.

Currently, the lab is tackling these and other challenging questions across several projects.

Project 1. We live in an uncertain world in which events and outcomes are often unpredictable. Adaptive control of cognition and decision making in response to uncertainty about the future is fundamental for survival. Maladaptive uncertainty-related behaviors, such as persistent risk seeking, are observed in a wide range of psychiatric disorders. But, to date, the neural mechanisms that govern risky decision making and control subjects’ risk attitudes are unclear. The lab seeks to uncover the neuronal mechanisms of risky decision making in humans and other animals.

Project 2. Biological agents, including humans, display a diversity of information seeking behaviors aiming to reduce uncertainty about the future. For example, animals and humans are often willing to pay for information about future events even when this information cannot be used to change their lives. The lab wishes to reveal the computational and neurobiological basis for information seeking. Particularly, we are studying mechanisms through which in complex economic multi-attribute decision making tasks subjects assign value to information and to other attributes to guide their choices.

Project 3. Behavioral experiments show that novel visual objects motivate behavior, for example by capturing attention and gaze, and by promoting the formation of new memories. Computational work argues that novelty triggers new learning. Abnormalities in novelty seeking are strongly associated with obsessive compulsive disorder, anxiety, depression, anhedonia and autism. And yet, despite the importance of novel objects in our daily life, we currently lack an understanding of how primate brain circuits determine whether an object is novel, and how these circuits utilize novelty signals to control novelty-seeking or novelty-avoidance. The lab is studying how the brain motivates novelty exploration and how it determines whether objects are novel of familiar.

Project 4. Aversive states are affected by our predictions. For example, an unexpected noxious stimulus can elicit more aversion than an expected one. And, some people want to know the probability and timing of noxious events, while other people wish not to know; and when most of us experience uncertainty about aversive events we feel “anxious”. The lab is studying the similarities and differences in how aversive versus rewarding predictions impact decision making and other behaviorally-relevant processes. How valence specific circuits control subjects’ attitudes towards uncertainty-resolving information in economic decisions is of particular interest.


Selected publications

See a complete list of Dr. Monosov’s publications on PubMed.


Education

2004, B.S.,University of California, San Diego 

2005, M.S., New School of Architecture in San Diego   

2010, PhD, Brown University